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ABSTRACT 
 

Adopting concepts from statistical language modeling and rule-
based transformations can lead to effective and efficient text-to-
phone (TTP) functions.  We present here the methods and results 
of one such effort, resulting in a relatively compact and fast set of 
TTP rules that achieves 94.5% segmental phonemic accuracy. 

1. INTRODUCTION 
 
Functions that transduce orthographic text into a phonemic or 
phonetic representation of its likely pronunciation find a number 
of uses in computer processing of speech and language.  They 
are needed for synthesis from text, of course, but are also needed 
or useful for any symbolic computation that takes account of the 
sound of words.  Examples include alignment of two text strings 
to maximize the sound similarity of corresponding words [6], the 
detection of splits and merges (in which a word in one text string 
corresponds to more than one word in another) [6], modeling 
speech recognizers to predict their performance [2]; and 
automatic generation of lexical entries for out-of-vocabulary 
(OOV) words for a speech recognizer [3] (the one this work was 
done to support).  
 
Since the earliest days of TTP work, a popular approach has 
been to first look words up in a pronunciation dictionary or 
lexicon (a pronlex), applying a generative function – one that 
generates an output for any input, without dictionary look-up – 
only to those not found.  The work reported here is concerned 
only with this dictionary-less generative function. 
 
There have been a large number of efforts in the past to produce 
such general functions, both hand-crafted and data-driven, simple 
and complex [e.g. 1, 5, 7, 8, 9, 10, 11, 12].  This effort was 
directly inspired by the recent work of Meng et al. [9, 10, 11] and 
the now-standard Ngram methods for statistical language 
modeling [1].  

2. GENERAL SCHEME 
The basic concept of standard SLM work is expressed well by 
Stolcke [13, p. 270]: “An N-gram language model represents a 
probability distribution over words w, conditioned on (N-1)-
tuples of preceding words, or histories h”.  Adapting this concept 
to TTP produces our basic LnRm model: a probability 

distribution over letter:phone mappings, conditioned on n-tuples 
of preceding characters and m-tuples of following characters.   

While our initial work implemented this concept as indexed 
(n+m)-dimensional arrays, we now use the following string 
transformation rule formalism. 

The logical form of the rules, common in Linguistics, is: 

       "T" => [P] / "L" __ "R" 

where T (target), L (left environment), and R (right environment) 
are character strings and P specifies which string of one or more 
phones is output.  They are applied in one pass, transducing an 
input character string into a phonemic or phonetic representation. 

The data structure holding the rules is a hash table whose key is a 
string representing the L, T, and R character strings of the rule, 
separated with “.”, and whose content is P, specifying which 
phones correspond to the target letter string.  This P specification 
is in general a probability distribution over phone strings, but for 
some applications, including this one, a rule may be determinized 
by reducing the P specification to just the single most likely 
phone string.  For example, an L1R2 rule with probabilistic 
output and its deterministic version are: 
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We have so far dealt only with rules producing segmental lexical 
phonemes, viewing suprasegmentals and boundaries as the next 
problem to tackle.  And while we have not done so yet, it would 
be easy to make inverse phone-to-text rules by simply 
interchanging the phone and letter strings in the training 
program.  In our work so far, the target parts of each rule have 
been just one character wide, and so the LnRm terminology for 
describing the skeletal structure of the key part of a rule is 
sufficient.  But our data structures can quite easily handle target 
parts of more than one letter, and we expect to adapt our logic for 
finding splits and merges [6] to produce “LnTxRm” rules in the 
future. 

The basic step in estimating the probabilities is aligning character 
and phone exemplar strings and tallying a pot associated with 
each indicated correspondence.  To produce the alignments, we 
use a slight adaptation of our general DP alignment procedure, 



which finds an alignment that minimizes the sum of distance 
between the characters and phones put into correspondence.  The 
atomic character:phone distances now come from an arbitrary 
table that we quickly put together.  While this table is important 
to the whole algorithm, we didn't waste much effort on it because 
we have plans to develop an iterative flat-start procedure that will 
not need it. 

3. EVALUATION METHODOLOGY 
 
Making the assumption that the character-to-sound regularities 
found in new OOV words are typical of those found in general 
English allows us to evaluate TTP functions for this use by cross-
validation using a pronlex for training and testing. An experiment 
consists of training the rules on a randomly selected fraction of 
the items in the pronlex and then testing them on another 
randomly-selected non-overlapping fraction of the items.  
Frequency weighting of lexical items is not used, since we have 
no basis for estimating the frequency of OOV words.  The 
inaccuracy of the resulting function is expressed by the phone 
error rate (PER), measured by applying NIST’s standard 
alignment and error-finding scheme (as used in Sclite), treating 
the phone string from the pronlex as the REF symbol string and 
the phone string from the function as the HYP string. If a lexeme 
has several pronunciations, we count the lowest-PER one. Each 
data point we plot is the mean of 10 such randomized 
experiments. 
 
In showing the power of methods such as ours, it is important to 
use a pronlex that is relatively free of error – especially non-
systematic error.  In order to reduce random error while not 
ending up with too small a pronlex, we used one that we call the 
“411” pronlex, which consists of only the word pronunciations 
that occur in a least 4 of 11 pronlexes we have on hand.  This 
pool of pronlexes includes the LDC, CMU, UCLA, CELEX, 
TIMIT, and Moby ones, as well as several other proprietary ones.  
The 411 Pronlex contains 50,299 main items and 53,458 word 
pronunciations. 

4. DETAILS 

4.1 PER vs. Training 

In order to get a feel for the effects of rule environment size 
(analogous to Ngram order) and amount of training on accuracy, 
we first did an experiment whose results are shown below as 
Figure 1.  We measured and plotted the PER of several different 
types of trained-up rules as a function of different percentages of 
the pronlex used in training, always testing on a different 
randomly-selected 10% of the pronlex.  The first four curves 
shown, labeled “px_lNrM”, represent the results for sets of rules 
of type LnRm.  No backoff was used in these first four.  The 
general effects can be easily seen: the larger the rule environment 
(analogous to higher order of Ngram), the slower the error rate is 
reduced with more training, but the lower it gets asymptotically.  
The fifth curve, labeled “pxb_l1r2”, shows the effect of backing 
off (to be discussed later), combining the rapid descent of the 
small-environment (low order) rules with the low ultimate error 
rate of the large-environment (high order) ones. 

 

 

Fig. 1. Effect of Training on PER for Different Context Sizes. 

4.2 Character Coverage vs. Training 

Figure 2 below is a similar plot, showing the effects of rule 
environment size and amount of training on coverage of the input 
character N-graphs.  Not surprisingly, as the environment size is 
increased, it takes more and more training data for the simple 
rules to achieve the same level of coverage.  The last curve 
shown is for a backed-off version that, again not surprisingly, 
achieves total coverage with very little training. 

 

Fig. 2.  Effect of Training on Letter Coverage for 
Different Context Sizes. 

4.3 Backing Off 

In conventional N-gram language modeling, the concept of 
backing off means that if the probability of a word cannot be 
estimated because the count of its N-gram is essentially zero, 
then one should back off to using the next lower order (N-1)-
gram to estimate it, using an appropriate weight. Our 
implementation of this concept is, in general, to first check if 



there is a rule in the ruleset matching the most specific key; and 
if not, to check for a less specific rule, and so on.  For example, if 
we are transducing the string "bathe", with the cursor pointing at 
the "t", we would first check for the presence of a rule fitting the 
most specific schema, say "L3R3", which would be "#ba.t.he#".  
If our probe found no rule answering to such a key, we might 
back off to a schema of "L2R3", or "ba.t.he#".  We assume that 
the likelihood of getting a hit on a rule increases with its 
generality.  A backoff path is then a sequence of rule schemas to 
try when applying the rules. 

In standard statistical language modeling, the succession to 
follow in backing off is not an issue: if there is no entry for a 
probability conditioned on the immediately preceding N words, 
then an entry conditioned on the immediately preceding N-1 
words is sought.  In our case, the action of the rule is conditioned 
by symbols both preceding and following the target, and the 
optimal backoff path is not obvious.  For example, if we check 
and find no rule conditioned by two letters on the left and two on 
the right, should we next try one letter on the left and two on the 
right, or two on the left and one on the right?  The question in 
general then is:  What is the optimal backoff path to follow? 

We have always assumed that the successor to the schema last 
tried should be one of more generality; since subparts consist of 
only literal strings, that implies reducing the number of symbols 
in the environment of the rule.  Assuming further that the number 
of symbols should be decreased minimally (by 1) at each stage 
implies that the number of possible backoff paths starting from 
an LnRm rule is  

                              npaths = (n+m)!  

While this is a very large space, we have some preliminary 
evidence indicating that, at least for English, the proper 
generalization about the backoff path to follow is: if the current 
environment is unbalanced, back off to a balanced one; if it is 
balanced, back off to one with more symbols on the right. For 
example, the successor to "L2R3" would be "L2R2", and the 
successor to "L3R3" would be "L2R3". 

            Fig. 3. Effect of Context Placement on PER. 

  Figure 3 above shows the preliminary evidence, being a plot of 
PER vs. size of training set for three different allocations of two 
environmental symbols to rule sub-parts, which can be viewed as 

three different backoff possibilities from the L1R2 schema.  At 
least for this case, the generalization stated above holds.  

4.4 Minimizing Ruleset Size 

The space of possible rules, or alternatively array elements, is 
quite large: at least m**n, where m is the number of characters 
and n is the number of symbols in the conditioning environment.  
Our first programs, which used multi-dimensional arrays as the 
data structure, exhausted the memory on our largest computer 
when we tried to use more than five environmental symbols.  
Moving to the rule-based data structure, which can be viewed as 
a sparse-matrix technique, resulted in storing only 900k non-null 
values covering a space of at least 30**8 points in an experiment 
on L4R4 rules, a reduction by a factor of almost 10**6. 

We have implemented another technique for minimizing the 
number of rules stored, which may have application back to the 
analogous arena of sentential language modeling: elimination of 
redundant rules.  It is a special case of the general pruning rule of 
deleting that element whose deletion will increase the expected 
error rate the least. 

Given a well-defined backoff path, each rule key A has a 
successor rule key B, in the sense that if rule key A is sought and 
not found, rule key B will be sought next. For example, given the 
partial backoff path (L2R2 --> L1R2), the successor of rule key 
"#b.a.th" is "b.a.th".  Now if a particular rule set contains both a 
rule key A and its successor on the backoff trajectory, rule key B, 
and the output of both rules is identical, then we can delete the 
rule with key A without changing the input/output characteristics 
of the rule set.  Figure 4 below shows us how much the size of 
the rule set produced by our standard procedure is decreased by 
such a strategy.  At the largest rule environment tested, the 
reduction is from 900k rules to 20k, a factor of 45. 

           Fig. 4. Effect of Deleting Redundant Rules. 

The cost of the strategy in terms of increased execution time is 
small, being a few more failed hash probes.  It should be noted 
that this rule set has been determinized by the time we apply this 
pruning technique.  Applying this strategy to non-deterministic 
cases where probabilities must be equal in order for the output of 
two rules to count as identical would certainly not pay off to the 
same degree. 



5. FINAL RESULTS 

Finally, to illustrate the high accuracy obtainable with this kind 
of algorithm, we present Figure 5, which is a plot of PER vs. the  
maximum number of letters in the environment of a rule in the 
rule set, analogous to the order N of an Ngram model.  Our 
strategy  for backing off is used, and minimization reduces the 
number of rules to fewer than 20k.  The constant line shown for 
comparison is the most comparable result reported in Meng et al. 
1996[11], although such comparisons should be taken with a 
grain of salt because the pronlexes, phoneme sets, and scoring 
algorithms used are at least somewhat different. 

 

         Fig. 5. Effect of Rule Environment Size on PER. 

 

6. SUMMARY 

We have shown that the simplest rule formalism, when coupled 
with the powerful algorithms of statistical training, hash coding, 
backing off, and deletion of redundant elements, can result in a 
compact and fast text-to-phone function that is highly accurate. 

 

7. PROSPECTUS 

There are a number of ways in which we plan to continue this 
work: 1) further experimentation to determine for sure the 
optimal back-off path; 2) trying to improve the rules by 
increasing the size of the target (T), using a version of our 
split/merge finding algorithm; and 3) post-processing the rules to 
yield fewer but more general ones. 
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